Enumeration of the Number of Spanning Trees for the Subdivision Technique of Five New Classes of Graphs

نویسنده

  • E. M. Badr
چکیده

Our paper has two goals: i) We propose the combinatorial approach to facilitate the calculation of the number of spanning trees for five new classes of graphs. ii) We use a new powerful operation (subdivision) to get larger graphs from a given graph. In particular, we derive the explicit formulas for the subdivision of ladder, fan, triangular snake, double triangular snake and the total graph of path Pn. Mathematics Subject Classification: Primary 05C05, Secondary 05C30

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eternal m-security subdivision numbers in graphs

An eternal $m$-secure set of a graph $G = (V,E)$ is aset $S_0subseteq V$ that can defend against any sequence ofsingle-vertex attacks by means of multiple-guard shifts along theedges of $G$. A suitable placement of the guards is called aneternal $m$-secure set. The eternal $m$-security number$sigma_m(G)$ is the minimum cardinality among all eternal$m$-secure sets in $G$. An edge $uvin E(G)$ is ...

متن کامل

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

Total perfect codes‎, ‎OO-irredundant and total subdivision in graphs

‎Let $G=(V(G),E(G))$ be a graph‎, ‎$gamma_t(G)$. Let $ooir(G)$ be the total domination and OO-irredundance number of $G$‎, ‎respectively‎. ‎A total dominating set $S$ of $G$ is called a $textit{total perfect code}$ if every vertex in $V(G)$ is adjacent to exactly one vertex of $S$‎. ‎In this paper‎, ‎we show that if $G$ has a total perfect code‎, ‎then $gamma_t(G)=ooir(G)$‎. ‎As a consequence, ...

متن کامل

Total Roman domination subdivision number in graphs

A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015